G2TT
来源类型Discussion paper
规范类型论文
来源IDDP17410
DP17410 Measuring Brexit Uncertainty: A Machine Learning and Textual Analysis Approach
Wanyu Chung; Duiyi Dai; Robert Elliott
发表日期2022-06-27
出版年2022
语种英语
摘要In this paper we develop a series of Brexit uncertainty indices (BUI) based on UK newspaper coverage. Using unsupervised machine learning (ML) methods to automatically select topics, our main contribution is to generate timely and cost-effective indicators of uncertainty. In further analysis we are able to distinguish Brexit related uncertainty from the uncertainly due to COVID-19. Our indices can be used to investigate Brexit-related uncertainties across different policy areas.
主题International Trade and Regional Economics
关键词Brexit Uncertainty Machine learning
URLhttps://cepr.org/publications/dp17410
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/546484
推荐引用方式
GB/T 7714
Wanyu Chung,Duiyi Dai,Robert Elliott. DP17410 Measuring Brexit Uncertainty: A Machine Learning and Textual Analysis Approach. 2022.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wanyu Chung]的文章
[Duiyi Dai]的文章
[Robert Elliott]的文章
百度学术
百度学术中相似的文章
[Wanyu Chung]的文章
[Duiyi Dai]的文章
[Robert Elliott]的文章
必应学术
必应学术中相似的文章
[Wanyu Chung]的文章
[Duiyi Dai]的文章
[Robert Elliott]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。