Gateway to Think Tanks
来源类型 | Discussion paper |
规范类型 | 论文 |
来源ID | DP17410 |
DP17410 Measuring Brexit Uncertainty: A Machine Learning and Textual Analysis Approach | |
Wanyu Chung; Duiyi Dai; Robert Elliott | |
发表日期 | 2022-06-27 |
出版年 | 2022 |
语种 | 英语 |
摘要 | In this paper we develop a series of Brexit uncertainty indices (BUI) based on UK newspaper coverage. Using unsupervised machine learning (ML) methods to automatically select topics, our main contribution is to generate timely and cost-effective indicators of uncertainty. In further analysis we are able to distinguish Brexit related uncertainty from the uncertainly due to COVID-19. Our indices can be used to investigate Brexit-related uncertainties across different policy areas. |
主题 | International Trade and Regional Economics |
关键词 | Brexit Uncertainty Machine learning |
URL | https://cepr.org/publications/dp17410 |
来源智库 | Centre for Economic Policy Research (United Kingdom) |
资源类型 | 智库出版物 |
条目标识符 | http://119.78.100.153/handle/2XGU8XDN/546484 |
推荐引用方式 GB/T 7714 | Wanyu Chung,Duiyi Dai,Robert Elliott. DP17410 Measuring Brexit Uncertainty: A Machine Learning and Textual Analysis Approach. 2022. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。