G2TT
来源类型Discussion paper
规范类型论文
来源IDDP16096
DP16096 Optimal Price Targeting
Adam Smith; Stephan Seiler; Ishant Aggarwal
发表日期2022-07-14
出版年2022
语种英语
摘要We study the profitability of personalized pricing policies in a setting with consumer-level panel data. To compare pricing policies, we propose an inverse probability weighted estimator of profits, discuss how to handle non-random price variation, and show how to apply it in a typical consumer packaged good market with supermarket scanner data. We generate pricing policies from Bayesian hierarchical choice models, regularized regressions, neural networks, and nonparametric classifiers using different sets of data inputs. We find that the performance of machine learning methods is highly varied, ranging from a 30.7% loss to a 14.9% gain relative to a blanket couponing strategy, whereas hierarchical models generate profit gains in the range of 13–16.7%. Across all models, information on consumers' purchase histories leads to large improvements in profits, while demographic information only has a small impact. We find that out-of-sample fit statistics are uncorrelated with profit estimates and provide poor guidance towards model selection.
主题Industrial Organization
关键词Targeting Personalization Heterogeneity Choice models Machine learning
URLhttps://cepr.org/publications/dp16096-2
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/546563
推荐引用方式
GB/T 7714
Adam Smith,Stephan Seiler,Ishant Aggarwal. DP16096 Optimal Price Targeting. 2022.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Adam Smith]的文章
[Stephan Seiler]的文章
[Ishant Aggarwal]的文章
百度学术
百度学术中相似的文章
[Adam Smith]的文章
[Stephan Seiler]的文章
[Ishant Aggarwal]的文章
必应学术
必应学术中相似的文章
[Adam Smith]的文章
[Stephan Seiler]的文章
[Ishant Aggarwal]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。