G2TT
来源类型Discussion paper
规范类型论文
来源IDDP17484
DP17484 Selecting the Best when Selection is Hard
Mikhail Drugov; Margaret Meyer; Marc Möller
发表日期2022-07-20
出版年2022
语种英语
摘要In dynamic promotion contests, where performance measurement is noisy and constrained to be ordinal, selection of the most able agent can be improved by biasing later stages in favor of early performers. We show that even in the worst-case scenario, where external random factors swamp the difference in agents' abilities in determining their relative performance, optimal bias is (i) strictly positive and (ii) locally insensitive to changes in the ratio of heterogeneity to noise. To explain these, arguably surprising, limiting results, we demonstrate a close relationship in the limit between optimal bias under ordinal information and the expected optimal bias when bias can be conditioned on cardinal information about relative performance. As a consequence of these two limiting properties, the simple rule of setting bias as if in the worst-case scenario achieves most of the potential gains in selective efficiency from biasing dynamic rank-order contests.
主题Organizational Economics
关键词Dynamic contests Selective efficiency Bias Learning Promotions
URLhttps://cepr.org/publications/dp17484
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/546579
推荐引用方式
GB/T 7714
Mikhail Drugov,Margaret Meyer,Marc Möller. DP17484 Selecting the Best when Selection is Hard. 2022.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Mikhail Drugov]的文章
[Margaret Meyer]的文章
[Marc Möller]的文章
百度学术
百度学术中相似的文章
[Mikhail Drugov]的文章
[Margaret Meyer]的文章
[Marc Möller]的文章
必应学术
必应学术中相似的文章
[Mikhail Drugov]的文章
[Margaret Meyer]的文章
[Marc Möller]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。