G2TT
来源类型Discussion paper
规范类型论文
来源IDDP17512
DP17512 Capturing Macroeconomic Tail Risks with Bayesian Vector Autoregressions
Andrea Carriero; Todd Clark; Massimiliano Marcellino
发表日期2022-07-28
出版年2022
语种英语
摘要A rapidly growing body of research has examined tail risks in macroeconomic outcomes, commonly using quantile regression methods to estimate tail risks. Although much of this work discusses asymmetries in conditional predictive distributions, the analysis often focuses on evidence of downside risk varying more than upside risk. This pattern in risk estimates over time could obtain with conditional distributions that are symmetric but subject to simultaneous shifts in conditional means (down) and variances (up). We show that Bayesian vector autoregressions (BVARs) with stochastic volatility are able to capture tail risks in macroeconomic forecast distributions and outcomes. Even though the 1-step-ahead conditional predictive distributions from the conventional stochastic volatility specification are symmetric, forecasts of downside risks to output growth are more variable than upside risks, and the reverse applies in the case of inflation and unemployment. Overall, the BVAR models perform comparably to quantile regression for estimating and forecasting tail risks, complementing BVARs' established performance for forecasting and structural analysis.
主题Monetary Economics and Fluctuations
关键词Forecasting Downside risk Asymmetries
URLhttps://cepr.org/publications/dp17512
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/546597
推荐引用方式
GB/T 7714
Andrea Carriero,Todd Clark,Massimiliano Marcellino. DP17512 Capturing Macroeconomic Tail Risks with Bayesian Vector Autoregressions. 2022.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Andrea Carriero]的文章
[Todd Clark]的文章
[Massimiliano Marcellino]的文章
百度学术
百度学术中相似的文章
[Andrea Carriero]的文章
[Todd Clark]的文章
[Massimiliano Marcellino]的文章
必应学术
必应学术中相似的文章
[Andrea Carriero]的文章
[Todd Clark]的文章
[Massimiliano Marcellino]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。