Gateway to Think Tanks
来源类型 | Working Paper |
规范类型 | 报告 |
DOI | 10.3386/t0165 |
来源ID | Technical Working Paper 0165 |
Estimating Deterministic Trends in the Presence of Serially Correlated Errors | |
Eugene Canjels; Mark W. Watson | |
发表日期 | 1994-09-01 |
出版年 | 1994 |
语种 | 英语 |
摘要 | This paper studies the problems of estimation and inference in the linear trend model: yt=à+þt+ut, where ut follows an autoregressive process with largest root þ, and þ is the parameter of interest. We contrast asymptotic results for the cases þþþ < 1 and þ=1, and argue that the most useful asymptotic approximations obtain from modeling þ as local-to-unity. Asymptotic distributions are derived for the OLS, first-difference, infeasible GLS and three feasible GLS estimators. These distributions depend on the local-to-unity parameter and a parameter that governs the variance of the initial error term, þ. The feasible Cochrane-Orcutt estimator has poor properties, and the feasible Prais-Winsten estimator is the preferred estimator unless the researcher has sharp a priori knowledge about þ and þ. The paper develops methods for constructing confidence intervals for þ that account for uncertainty in þ and þ. We use these results to estimate growth rates for real per capita GDP in 128 countries. |
主题 | Econometrics ; Estimation Methods ; Other |
URL | https://www.nber.org/papers/t0165 |
来源智库 | National Bureau of Economic Research (United States) |
引用统计 | |
资源类型 | 智库出版物 |
条目标识符 | http://119.78.100.153/handle/2XGU8XDN/562255 |
推荐引用方式 GB/T 7714 | Eugene Canjels,Mark W. Watson. Estimating Deterministic Trends in the Presence of Serially Correlated Errors. 1994. |
条目包含的文件 | ||||||
文件名称/大小 | 资源类型 | 版本类型 | 开放类型 | 使用许可 | ||
t0165.pdf(1177KB) | 智库出版物 | 限制开放 | CC BY-NC-SA | 浏览 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Eugene Canjels]的文章 |
[Mark W. Watson]的文章 |
百度学术 |
百度学术中相似的文章 |
[Eugene Canjels]的文章 |
[Mark W. Watson]的文章 |
必应学术 |
必应学术中相似的文章 |
[Eugene Canjels]的文章 |
[Mark W. Watson]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。