G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/t0194
来源IDTechnical Working Paper 0194
Exact Maximum Likelihood Estimation of Observation-Driven Econometric Models
Francis X. Diebold; Til Schuermann
发表日期1996-04-01
出版年1996
语种英语
摘要The possibility of exact maximum likelihood estimation of many observation-driven models remains an open question. Often only approximate maximum likelihood estimation is attempted, because the unconditional density needed for exact estimation is not known in closed form. Using simulation and nonparametric density estimation techniques that facilitate empirical likelihood evaluation, we develop an exact maximum likelihood procedure. We provide an illustrative application to the estimation of ARCH models, in which we compare the sampling properties of the exact estimator to those of several competitors. We find that, especially in situations of small samples and high persistence, efficiency gains are obtained. We conclude with a discussion of directions for future research, including application of our methods to panel data models.
主题Econometrics ; Estimation Methods
URLhttps://www.nber.org/papers/t0194
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/562986
推荐引用方式
GB/T 7714
Francis X. Diebold,Til Schuermann. Exact Maximum Likelihood Estimation of Observation-Driven Econometric Models. 1996.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
t0194.pdf(583KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Francis X. Diebold]的文章
[Til Schuermann]的文章
百度学术
百度学术中相似的文章
[Francis X. Diebold]的文章
[Til Schuermann]的文章
必应学术
必应学术中相似的文章
[Francis X. Diebold]的文章
[Til Schuermann]的文章
相关权益政策
暂无数据
收藏/分享
文件名: t0194.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。