G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/t0195
来源IDTechnical Working Paper 0195
Inferences from Parametric and Non-Parametric Covariance Matrix Estimation Procedures
Wouter J. Den Haan; Andrew Levin
发表日期1996-05-01
出版年1996
语种英语
摘要In this paper, we propose a parametric spectral estimation procedure for constructing heteroskedasticity and autocorrelation consistent (HAC) covariance matrices. We establish the consistency of this procedure under very general conditions similar to those considered in previous research, and we demonstrate that the parametric estimator converges at a faster rate than the kernel-based estimators proposed by Andrews and Monahan (1992) and Newey and West (1994). In finite samples, our Monte Carlo experiments indicate that the parametric estimator matches, and in some cases greatly exceeds, the performance of the prewhitened kernel estimator proposed by Andrews and Monahan (1992). These simulation experiments illustrate several important limitations of non-parametric HAC estimation procedures, and highlight the advantages of explicitly modeling the temporal properties of the error terms. Wouter J. den Haan Andrew Levin Depa
主题Econometrics ; Estimation Methods
URLhttps://www.nber.org/papers/t0195
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/563028
推荐引用方式
GB/T 7714
Wouter J. Den Haan,Andrew Levin. Inferences from Parametric and Non-Parametric Covariance Matrix Estimation Procedures. 1996.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
t0195.pdf(1714KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wouter J. Den Haan]的文章
[Andrew Levin]的文章
百度学术
百度学术中相似的文章
[Wouter J. Den Haan]的文章
[Andrew Levin]的文章
必应学术
必应学术中相似的文章
[Wouter J. Den Haan]的文章
[Andrew Levin]的文章
相关权益政策
暂无数据
收藏/分享
文件名: t0195.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。