Gateway to Think Tanks
来源类型 | Working Paper |
规范类型 | 报告 |
DOI | 10.3386/w11962 |
来源ID | Working Paper 11962 |
Multi-Period Corporate Default Prediction With Stochastic Covariates | |
Darrell Duffie; Leandro Siata; Ke Wang | |
发表日期 | 2006-01-23 |
出版年 | 2006 |
语种 | 英语 |
摘要 | We provide maximum likelihood estimators of term structures of conditional probabilities of corporate default, incorporating the dynamics of firm-specific and macroeconomic covariates. For U.S. Industrial firms, based on over 390,000 firm-months of data spanning 1979 to 2004, the level and shape of the estimated term structure of conditional future default probabilities depends on a firm's distance to default (a volatility-adjusted measure of leverage), on the firm's trailing stock return, on trailing S&P 500 returns, and on U.S. interest rates, among other covariates. Distance to default is the most influential covariate. Default intensities are estimated to be lower with higher short-term interest rates. The out-of-sample predictive performance of the model is an improvement over that of other available models. |
主题 | Econometrics ; Estimation Methods ; Financial Economics ; Corporate Finance ; Macroeconomics ; Money and Interest Rates |
URL | https://www.nber.org/papers/w11962 |
来源智库 | National Bureau of Economic Research (United States) |
引用统计 | |
资源类型 | 智库出版物 |
条目标识符 | http://119.78.100.153/handle/2XGU8XDN/569613 |
推荐引用方式 GB/T 7714 | Darrell Duffie,Leandro Siata,Ke Wang. Multi-Period Corporate Default Prediction With Stochastic Covariates. 2006. |
条目包含的文件 | ||||||
文件名称/大小 | 资源类型 | 版本类型 | 开放类型 | 使用许可 | ||
w11962.pdf(388KB) | 智库出版物 | 限制开放 | CC BY-NC-SA | 浏览 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。