G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w13397
来源IDWorking Paper 13397
Comparing Greenbook and Reduced Form Forecasts using a Large Realtime Dataset
Jon Faust; Jonathan H. Wright
发表日期2007-09-12
出版年2007
语种英语
摘要Many recent papers have found that atheoretical forecasting methods using many predictors give better predictions for key macroeconomic variables than various small-model methods. The practical relevance of these results is open to question, however, because these papers generally use ex post revised data not available to forecasters and because no comparison is made to best actual practice. We provide some evidence on both of these points using a new large dataset of vintage data synchronized with the Fed's Greenbook forecast. This dataset consists of a large number of variables, as observed at the time of each Greenbook forecast since 1979. Thus, we can compare real-time large dataset predictions to both simple univariate methods and to the Greenbook forecast. For inflation we find that univariate methods are dominated by the best atheoretical large dataset methods and that these, in turn, are dominated by Greenbook. For GDP growth, in contrast, we find that once one takes account of Greenbook's advantage in evaluating the current state of the economy, neither large dataset methods nor the Greenbook process offers much advantage over a univariate autoregressive forecast.
主题Econometrics ; Estimation Methods ; Macroeconomics ; Business Cycles
URLhttps://www.nber.org/papers/w13397
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/571069
推荐引用方式
GB/T 7714
Jon Faust,Jonathan H. Wright. Comparing Greenbook and Reduced Form Forecasts using a Large Realtime Dataset. 2007.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w13397.pdf(276KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jon Faust]的文章
[Jonathan H. Wright]的文章
百度学术
百度学术中相似的文章
[Jon Faust]的文章
[Jonathan H. Wright]的文章
必应学术
必应学术中相似的文章
[Jon Faust]的文章
[Jonathan H. Wright]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w13397.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。