G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w13414
来源IDWorking Paper 13414
Bayesian and Adaptive Optimal Policy under Model Uncertainty
Lars E.O. Svensson; Noah M. Williams
发表日期2007-09-14
出版年2007
语种英语
摘要We study the problem of a policymaker who seeks to set policy optimally in an economy where the true economic structure is unobserved, and he optimally learns from observations of the economy. This is a classic problem of learning and control, variants of which have been studied in the past, but seldom with forward-looking variables which are a key component of modern policy-relevant models. As in most Bayesian learning problems, the optimal policy typically includes an experimentation component reflecting the endogeneity of information. We develop algorithms to solve numerically for the Bayesian optimal policy (BOP). However, computing the BOP is only feasible in relatively small models, and thus we also consider a simpler specification we term adaptive optimal policy (AOP) which allows policymakers to update their beliefs but shortcuts the experimentation motive. In our setting, the AOP is significantly easier to compute, and in many cases provides a good approximation to the BOP. We provide some simple examples to illustrate the role of learning and experimentation in an MJLQ framework.
主题Microeconomics ; Economics of Information ; Macroeconomics ; Money and Interest Rates ; Monetary Policy
URLhttps://www.nber.org/papers/w13414
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/571085
推荐引用方式
GB/T 7714
Lars E.O. Svensson,Noah M. Williams. Bayesian and Adaptive Optimal Policy under Model Uncertainty. 2007.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w13414.pdf(686KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lars E.O. Svensson]的文章
[Noah M. Williams]的文章
百度学术
百度学术中相似的文章
[Lars E.O. Svensson]的文章
[Noah M. Williams]的文章
必应学术
必应学术中相似的文章
[Lars E.O. Svensson]的文章
[Noah M. Williams]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w13414.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。