G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/t0344
来源IDTechnical Working Paper 0344
Bootstrap-Based Improvements for Inference with Clustered Errors
A. Colin Cameron; Jonah B. Gelbach; Douglas L. Miller
发表日期2007-09-21
出版年2007
语种英语
摘要Researchers have increasingly realized the need to account for within-group dependence in estimating standard errors of regression parameter estimates. The usual solution is to calculate cluster-robust standard errors that permit heteroskedasticity and within-cluster error correlation, but presume that the number of clusters is large. Standard asymptotic tests can over-reject, however, with few (5-30) clusters. We investigate inference using cluster bootstrap-t procedures that provide asymptotic refinement. These procedures are evaluated using Monte Carlos, including the example of Bertrand, Duflo and Mullainathan (2004). Rejection rates of ten percent using standard methods can be reduced to the nominal size of five percent using our methods.
主题Econometrics ; Estimation Methods
URLhttps://www.nber.org/papers/t0344
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/571094
推荐引用方式
GB/T 7714
A. Colin Cameron,Jonah B. Gelbach,Douglas L. Miller. Bootstrap-Based Improvements for Inference with Clustered Errors. 2007.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
t0344.pdf(370KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[A. Colin Cameron]的文章
[Jonah B. Gelbach]的文章
[Douglas L. Miller]的文章
百度学术
百度学术中相似的文章
[A. Colin Cameron]的文章
[Jonah B. Gelbach]的文章
[Douglas L. Miller]的文章
必应学术
必应学术中相似的文章
[A. Colin Cameron]的文章
[Jonah B. Gelbach]的文章
[Douglas L. Miller]的文章
相关权益政策
暂无数据
收藏/分享
文件名: t0344.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。