G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w13787
来源IDWorking Paper 13787
A Maximum Likelihood Method for the Incidental Parameter Problem
Marcelo Moreira
发表日期2008-02-07
出版年2008
语种英语
摘要This paper uses the invariance principle to solve the incidental parameter problem. We seek group actions that preserve the structural parameter and yield a maximal invariant in the parameter space with fixed dimension. M-estimation from the likelihood of the maximal invariant statistic yields the maximum invariant likelihood estimator (MILE). We apply our method to (i) a stationary autoregressive model with fixed effects; (ii) an agent-specific monotonic transformation model; (iii) an instrumental variable (IV) model; and (iv) a dynamic panel data model with fixed effects. In the first two examples, there exist group actions that completely discard the incidental parameters. In a stationary autoregressive model with fixed effects, MILE coincides with existing conditional and integrated likelihood methods. The invariance principle also gives a new perspective to the marginal likelihood approach. In an agent-specific monotonic transformation model, our approach yields an estimator that is consistent and asymptotically normal when errors are Gaussian. In an instrumental variable (IV) model, this paper unifies asymptotic results under strong instruments (SIV) and many weak instruments (MWIV) frameworks. We obtain consistency, asymptotic normality, and optimality results for the limited information maximum likelihood estimator directly from the invariant likelihood. Our approach is parallel to M-estimation in problems in which the number of parameters does not change with the sample size. In a dynamic panel data model with N individuals and T time periods, MILE is consistent as long as NT goes to infinity. We obtain a large N, fixed T bound; this bound coincides with Hahn and Kuersteiner's (2002) bound when T goes to infinity. MILE reaches (i) our bound when N is large and T is fixed; and (ii) Hahn and Kuersteiner's (2002) bound when both N and T are large.
主题Econometrics ; Estimation Methods
URLhttps://www.nber.org/papers/w13787
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/571462
推荐引用方式
GB/T 7714
Marcelo Moreira. A Maximum Likelihood Method for the Incidental Parameter Problem. 2008.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w13787.pdf(350KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Marcelo Moreira]的文章
百度学术
百度学术中相似的文章
[Marcelo Moreira]的文章
必应学术
必应学术中相似的文章
[Marcelo Moreira]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w13787.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。