G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w13949
来源IDWorking Paper 13949
Nonparametric Identification and Estimation in a Generalized Roy Model
Patrick Bayer; Shakeeb Khan; Christopher Timmins
发表日期2008-04-16
出版年2008
语种英语
摘要This paper considers nonparametric identification and estimation of a generalized Roy model that includes a non-pecuniary component of utility associated with each choice alternative. Previous work has found that, without parametric restrictions or the availability of covariates, all of the useful content of a cross-sectional dataset is absorbed in a restrictive specification of Roy sorting behavior that imposes independence on wage draws. While this is true, we demonstrate that it is also possible to identify (under relatively innocuous assumptions and without the use of covariates) a common non-pecuniary component of utility associated with each choice alternative. We develop nonparametric estimators corresponding to two alternative assumptions under which we prove identification, derive asymptotic properties, and illustrate small sample properties with a series of Monte Carlo experiments. We demonstrate the usefulness of one of these estimators with an empirical application. Micro data from the 2000 Census are used to calculate the returns to a college education. If high-school and college graduates face different costs of migration, this would be reflected in different degrees of Roy-sorting-induced bias in their observed wage distributions. Correcting for this bias, the observed returns to a college degree are cut in half.
主题Econometrics ; Estimation Methods ; Labor Economics ; Labor Supply and Demand ; Labor Compensation
URLhttps://www.nber.org/papers/w13949
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/571621
推荐引用方式
GB/T 7714
Patrick Bayer,Shakeeb Khan,Christopher Timmins. Nonparametric Identification and Estimation in a Generalized Roy Model. 2008.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w13949.pdf(483KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Patrick Bayer]的文章
[Shakeeb Khan]的文章
[Christopher Timmins]的文章
百度学术
百度学术中相似的文章
[Patrick Bayer]的文章
[Shakeeb Khan]的文章
[Christopher Timmins]的文章
必应学术
必应学术中相似的文章
[Patrick Bayer]的文章
[Shakeeb Khan]的文章
[Christopher Timmins]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w13949.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。