Gateway to Think Tanks
来源类型 | Working Paper |
规范类型 | 报告 |
DOI | 10.3386/w13981 |
来源ID | Working Paper 13981 |
Inverse Probability Tilting for Moment Condition Models with Missing Data | |
Bryan S. Graham; Cristine Campos de Xavier Pinto; Daniel Egel | |
发表日期 | 2008-05-09 |
出版年 | 2008 |
语种 | 英语 |
摘要 | We propose a new inverse probability weighting (IPW) estimator for moment condition models with missing data. Our estimator is easy to implement and compares favorably with existing IPW estimators, including augmented inverse probability weighting (AIPW) estimators, in terms of efficiency, robustness, and higher order bias. We illustrate our method with a study of the relationship between early Black-White differences in cognitive achievement and subsequent differences in adult earnings. In our dataset the early childhood achievement measure, the main regressor of interest, is missing for many units. |
主题 | Econometrics ; Estimation Methods |
URL | https://www.nber.org/papers/w13981 |
来源智库 | National Bureau of Economic Research (United States) |
引用统计 | |
资源类型 | 智库出版物 |
条目标识符 | http://119.78.100.153/handle/2XGU8XDN/571656 |
推荐引用方式 GB/T 7714 | Bryan S. Graham,Cristine Campos de Xavier Pinto,Daniel Egel. Inverse Probability Tilting for Moment Condition Models with Missing Data. 2008. |
条目包含的文件 | ||||||
文件名称/大小 | 资源类型 | 版本类型 | 开放类型 | 使用许可 | ||
w13981.pdf(457KB) | 智库出版物 | 限制开放 | CC BY-NC-SA | 浏览 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。