G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w14247
来源IDWorking Paper 14247
Estimating Trends in US Income Inequality Using the Current Population Survey: The Importance of Controlling for Censoring
Richard V. Burkhauser; Shuaizhang Feng; Stephen P. Jenkins; Jeff Larrimore
发表日期2008-08-15
出版年2008
语种英语
摘要Using internal and public use March Current Population Survey (CPS) data, we analyze trends in US income inequality (1975-2004). We find that the upward trend in income inequality prior to 1993 significantly slowed thereafter once we control for top coding in the public use data and censoring in the internal data. Because both series do not capture trends at the very top of the income distribution, we use a multiple imputation approach in which values for censored observations are imputed using draws from a Generalized Beta distribution of the Second Kind (GB2) fitted to internal data. Doing so, we find income inequality trends similar to those derived from unadjusted internal data. Our trend results are generally robust to the choice of inequality index, whether Gini coefficient or other commonly-used indices. When we compare our best estimates of the income shares held by the richest tenth with those reported by Piketty and Saez (2003), our trends fairly closely match their trends, except for the top 1 percent of the distribution. Thus, we argue that if United States income inequality has been substantially increasing since 1993, such increases are confined to this very high income group.
主题Econometrics ; Data Collection ; Microeconomics ; Market Structure and Distribution
URLhttps://www.nber.org/papers/w14247
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/571921
推荐引用方式
GB/T 7714
Richard V. Burkhauser,Shuaizhang Feng,Stephen P. Jenkins,et al. Estimating Trends in US Income Inequality Using the Current Population Survey: The Importance of Controlling for Censoring. 2008.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w14247.pdf(357KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Richard V. Burkhauser]的文章
[Shuaizhang Feng]的文章
[Stephen P. Jenkins]的文章
百度学术
百度学术中相似的文章
[Richard V. Burkhauser]的文章
[Shuaizhang Feng]的文章
[Stephen P. Jenkins]的文章
必应学术
必应学术中相似的文章
[Richard V. Burkhauser]的文章
[Shuaizhang Feng]的文章
[Stephen P. Jenkins]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w14247.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。