G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w15026
来源IDWorking Paper 15026
Computing DSGE Models with Recursive Preferences
Dario Caldara; Jesús Fernández-Villaverde; Juan F. Rubio-Ramírez; Wen Yao
发表日期2009-06-01
出版年2009
语种英语
摘要This paper compares different solution methods for computing the equilibrium of dynamic stochastic general equilibrium (DSGE) models with recursive preferences such as those in Epstein and Zin (1989 and 1991). Models with these preferences have recently become popular, but we know little about the best ways to implement them numerically. To fill this gap, we solve the stochastic neoclassical growth model with recursive preferences using four different approaches: second- and third-order perturbation, Chebyshev polynomials, and value function iteration. We document the performance of the methods in terms of computing time, implementation complexity, and accuracy. Our main finding is that a third-order perturbation is competitive in terms of accuracy with Chebyshev polynomials and value function iteration, while being an order of magnitude faster to run. Therefore, we conclude that perturbation methods are an attractive approach for computing this class of problems.
主题Microeconomics ; Mathematical Tools ; Macroeconomics ; Business Cycles
URLhttps://www.nber.org/papers/w15026
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/572702
推荐引用方式
GB/T 7714
Dario Caldara,Jesús Fernández-Villaverde,Juan F. Rubio-Ramírez,et al. Computing DSGE Models with Recursive Preferences. 2009.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w15026.pdf(354KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Dario Caldara]的文章
[Jesús Fernández-Villaverde]的文章
[Juan F. Rubio-Ramírez]的文章
百度学术
百度学术中相似的文章
[Dario Caldara]的文章
[Jesús Fernández-Villaverde]的文章
[Juan F. Rubio-Ramírez]的文章
必应学术
必应学术中相似的文章
[Dario Caldara]的文章
[Jesús Fernández-Villaverde]的文章
[Juan F. Rubio-Ramírez]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w15026.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。