G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w15463
来源IDWorking Paper 15463
Testing the Correlated Random Coefficient Model
James J. Heckman; Daniel A. Schmierer; Sergio S. Urzua
发表日期2009-10-29
出版年2009
语种英语
摘要The recent literature on instrumental variables (IV) features models in which agents sort into treatment status on the basis of gains from treatment as well as on baseline-pretreatment levels. Components of the gains known to the agents and acted on by them may not be known by the observing economist. Such models are called correlated random coefficient models. Sorting on unobserved components of gains complicates the interpretation of what IV estimates. This paper examines testable implications of the hypothesis that agents do not sort into treatment based on gains. In it, we develop new tests to gauge the empirical relevance of the correlated random coefficient model to examine whether the additional complications associated with it are required. We examine the power of the proposed tests. We derive a new representation of the variance of the instrumental variable estimator for the correlated random coefficient model. We apply the methods in this paper to the prototypical empirical problem of estimating the return to schooling and find evidence of sorting into schooling based on unobserved components of gains.
主题Econometrics ; Estimation Methods
URLhttps://www.nber.org/papers/w15463
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/573139
推荐引用方式
GB/T 7714
James J. Heckman,Daniel A. Schmierer,Sergio S. Urzua. Testing the Correlated Random Coefficient Model. 2009.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w15463.pdf(805KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[James J. Heckman]的文章
[Daniel A. Schmierer]的文章
[Sergio S. Urzua]的文章
百度学术
百度学术中相似的文章
[James J. Heckman]的文章
[Daniel A. Schmierer]的文章
[Sergio S. Urzua]的文章
必应学术
必应学术中相似的文章
[James J. Heckman]的文章
[Daniel A. Schmierer]的文章
[Sergio S. Urzua]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w15463.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。