G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w15533
来源IDWorking Paper 15533
Jump-Robust Volatility Estimation using Nearest Neighbor Truncation
Torben G. Andersen; Dobrislav Dobrev; Ernst Schaumburg
发表日期2009-11-19
出版年2009
语种英语
摘要We propose two new jump-robust estimators of integrated variance based on high-frequency return observations. These MinRV and MedRV estimators provide an attractive alternative to the prevailing bipower and multipower variation measures. Specifically, the MedRV estimator has better theoretical efficiency properties than the tripower variation measure and displays better finite-sample robustness to both jumps and the occurrence of "zero'' returns in the sample. Unlike the bipower variation measure, the new estimators allow for the development of an asymptotic limit theory in the presence of jumps. Finally, they retain the local nature associated with the low order multipower variation measures. This proves essential for alleviating finite sample biases arising from the pronounced intraday volatility pattern which afflict alternative jump-robust estimators based on longer blocks of returns. An empirical investigation of the Dow Jones 30 stocks and an extensive simulation study corroborate the robustness and efficiency properties of the new estimators.
主题Econometrics ; Estimation Methods ; Data Collection ; Financial Economics ; Financial Markets
URLhttps://www.nber.org/papers/w15533
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/573209
推荐引用方式
GB/T 7714
Torben G. Andersen,Dobrislav Dobrev,Ernst Schaumburg. Jump-Robust Volatility Estimation using Nearest Neighbor Truncation. 2009.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w15533.pdf(1014KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Torben G. Andersen]的文章
[Dobrislav Dobrev]的文章
[Ernst Schaumburg]的文章
百度学术
百度学术中相似的文章
[Torben G. Andersen]的文章
[Dobrislav Dobrev]的文章
[Ernst Schaumburg]的文章
必应学术
必应学术中相似的文章
[Torben G. Andersen]的文章
[Dobrislav Dobrev]的文章
[Ernst Schaumburg]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w15533.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。