G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w16127
来源IDWorking Paper 16127
A Score Based Approach to Wild Bootstrap Inference
Patrick M. Kline; Andres Santos
发表日期2010-06-24
出版年2010
语种英语
摘要We propose a generalization of the wild bootstrap of Wu (1986) and Liu (1988) based upon perturbing the scores of M-estimators. This "score bootstrap" procedure avoids recomputing the estimator in each bootstrap iteration, making it substantially less costly to compute than the conventional nonparametric bootstrap, particularly in complex nonlinear models. Despite this computational advantage, in the linear model, the score bootstrap studentized test statistic is equivalent to that of the conventional wild bootstrap up to order O_p(n^(-1)). We establish the consistency of the procedure for Wald and Lagrange Multiplier type tests and tests of moment restrictions for a wide class of M-estimators under clustering and potential misspecification. In an extensive series of Monte Carlo experiments we find that the performance of the score bootstrap is comparable to competing approaches despite its computational savings.
主题Econometrics ; Estimation Methods
URLhttps://www.nber.org/papers/w16127
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/573801
推荐引用方式
GB/T 7714
Patrick M. Kline,Andres Santos. A Score Based Approach to Wild Bootstrap Inference. 2010.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w16127.pdf(572KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Patrick M. Kline]的文章
[Andres Santos]的文章
百度学术
百度学术中相似的文章
[Patrick M. Kline]的文章
[Andres Santos]的文章
必应学术
必应学术中相似的文章
[Patrick M. Kline]的文章
[Andres Santos]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w16127.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。