G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w16354
来源IDWorking Paper 16354
Multivariate Fractional Regression Estimation of Econometric Share Models
John Mullahy
发表日期2010-09-09
出版年2010
语种英语
摘要This paper describes and applies econometric strategies for estimating regression models of economic share data outcomes where the shares may take boundary values (zero and one) with nontrivial probability. The main focus of the paper is on the conditional mean structures of such data. The paper proposes an extension of the fractional regression methodology proposed by Papke and Wooldridge, 1996, 2008, in univariate cross-sectional and panel contexts. The paper discusses the stochastic aspects of share definition and measurement, and summarizes important features of the existing literature on econometric strategies for share model estimation. The paper then goes on to discuss the univariate fractional regression estimation strategies proposed by Papke and Wooldridge and to extend the fractional regression approach to estimation of and inference about regression models describing the multivariate share data. Some issues involving outcome aggregation/ disaggregation are considered, as is a full likelihood estimation approach based on Dirichlet-multinomial models. The paper demonstrates the workings of these various empirical strategies by estimating models of financial asset portfolio shares using data from the 2001, 2004, and 2007 U.S. Surveys of Consumer Finances.
主题Econometrics ; Estimation Methods ; Microeconomics ; Households and Firms
URLhttps://www.nber.org/papers/w16354
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/574029
推荐引用方式
GB/T 7714
John Mullahy. Multivariate Fractional Regression Estimation of Econometric Share Models. 2010.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w16354.pdf(389KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[John Mullahy]的文章
百度学术
百度学术中相似的文章
[John Mullahy]的文章
必应学术
必应学术中相似的文章
[John Mullahy]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w16354.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。