G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w16928
来源IDWorking Paper 16928
Efficient Estimation of Data Combination Models by the Method of Auxiliary-to-Study Tilting (AST)
Bryan S. Graham; Cristine Campos de Xavier Pinto; Daniel Egel
发表日期2011-04-07
出版年2011
语种英语
摘要We propose a locally efficient estimator for a class of semiparametric data combination problems. A leading estimand in this class is the Average Treatment Effect on the Treated (ATT). Data combination problems are related to, but distinct from, the class of missing data problems analyzed by Robins, Rotnitzky and Zhao (1994) (of which the Average Treatment Effect (ATE) estimand is a special case). Our estimator also possesses a double robustness property. Our procedure may be used to efficiently estimate, among other objects, the ATT, the two-sample instrumental variables model (TSIV), counterfactual distributions, poverty maps, and semiparametric difference-in-differences. In an empirical application we use our procedure to characterize residual Black-White wage inequality after flexibly controlling for 'pre-market' differences in measured cognitive achievement as in Neal and Johnson (1996).
主题Econometrics ; Estimation Methods ; Labor Economics ; Labor Compensation ; Labor Discrimination
URLhttps://www.nber.org/papers/w16928
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/574603
推荐引用方式
GB/T 7714
Bryan S. Graham,Cristine Campos de Xavier Pinto,Daniel Egel. Efficient Estimation of Data Combination Models by the Method of Auxiliary-to-Study Tilting (AST). 2011.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w16928.pdf(409KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bryan S. Graham]的文章
[Cristine Campos de Xavier Pinto]的文章
[Daniel Egel]的文章
百度学术
百度学术中相似的文章
[Bryan S. Graham]的文章
[Cristine Campos de Xavier Pinto]的文章
[Daniel Egel]的文章
必应学术
必应学术中相似的文章
[Bryan S. Graham]的文章
[Cristine Campos de Xavier Pinto]的文章
[Daniel Egel]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w16928.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。