G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w17064
来源IDWorking Paper 17064
Recursive Contracts, Lotteries and Weakly Concave Pareto Sets
Harold L. Cole; Felix Kubler
发表日期2011-05-20
出版年2011
语种英语
摘要Marcet and Marimon (1994, revised 1998, revised 2011) developed a recursive saddle point method which can be used to solve dynamic contracting problems that include participation, enforcement and incentive constraints. Their method uses a recursive multiplier to capture implicit prior promises to the agent(s) that were made in order to satisfy earlier instances of these constraints. As a result, their method relies on the invertibility of the derivative of the Pareto frontier and cannot be applied to problems for which this frontier is not strictly concave. In this paper we show how one can extend their method to a weakly concave Pareto frontier by expanding the state space to include the realizations of an end of period lottery over the extreme points of a flat region of the Pareto frontier. With this expansion the basic insight of Marcet and Marimon goes through - one can make the problem recursive in the Lagrangian multiplier which yields significant computational advantages over the conventional approach of using utility as the state variable. The case of a weakly concave Pareto frontier arises naturally in applications where the principal's choice set is not convex but where randomization is possible.
主题Microeconomics ; Mathematical Tools ; Economics of Information
URLhttps://www.nber.org/papers/w17064
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/574739
推荐引用方式
GB/T 7714
Harold L. Cole,Felix Kubler. Recursive Contracts, Lotteries and Weakly Concave Pareto Sets. 2011.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w17064.pdf(272KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Harold L. Cole]的文章
[Felix Kubler]的文章
百度学术
百度学术中相似的文章
[Harold L. Cole]的文章
[Felix Kubler]的文章
必应学术
必应学术中相似的文章
[Harold L. Cole]的文章
[Felix Kubler]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w17064.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。