G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w17152
来源IDWorking Paper 17152
A Functional Filtering and Neighborhood Truncation Approach to Integrated Quarticity Estimation
Torben G. Andersen; Dobrislav Dobrev; Ernst Schaumburg
发表日期2011-06-16
出版年2011
语种英语
摘要We provide a first in-depth look at robust estimation of integrated quarticity (IQ) based on high frequency data. IQ is the key ingredient enabling inference about volatility and the presence of jumps in financial time series and is thus of considerable interest in applications. We document the significant empirical challenges for IQ estimation posed by commonly encountered data imperfections and set forth three complementary approaches for improving IQ based inference. First, we show that many common deviations from the jump diffusive null can be dealt with by a novel filtering scheme that generalizes truncation of individual returns to truncation of arbitrary functionals on return blocks. Second, we propose a new family of efficient robust neighborhood truncation (RNT) estimators for integrated power variation based on order statistics of a set of unbiased local power variation estimators on a block of returns. Third, we find that ratio-based inference, originally proposed by Barndorff-Nielsen and Shephard, has desirable robustness properties and is well suited for our empirical applications. We confirm that the proposed filtering scheme and the RNT estimators perform well in our extensive simulation designs and in an application to the individual Dow Jones 30 stocks.
主题Financial Economics ; Portfolio Selection and Asset Pricing ; Financial Markets
URLhttps://www.nber.org/papers/w17152
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/574826
推荐引用方式
GB/T 7714
Torben G. Andersen,Dobrislav Dobrev,Ernst Schaumburg. A Functional Filtering and Neighborhood Truncation Approach to Integrated Quarticity Estimation. 2011.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w17152.pdf(1755KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Torben G. Andersen]的文章
[Dobrislav Dobrev]的文章
[Ernst Schaumburg]的文章
百度学术
百度学术中相似的文章
[Torben G. Andersen]的文章
[Dobrislav Dobrev]的文章
[Ernst Schaumburg]的文章
必应学术
必应学术中相似的文章
[Torben G. Andersen]的文章
[Dobrislav Dobrev]的文章
[Ernst Schaumburg]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w17152.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。