G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w18467
来源IDWorking Paper 18467
Prior Selection for Vector Autoregressions
Domenico Giannone; Michele Lenza; Giorgio E. Primiceri
发表日期2012-10-18
出版年2012
语种英语
摘要Vector autoregressions (VARs) are flexible time series models that can capture complex dynamic interrelationships among macroeconomic variables. However, their dense parameterization leads to unstable inference and inaccurate out-of-sample forecasts, particularly for models with many variables. A solution to this problem is to use informative priors, in order to shrink the richly parameterized unrestricted model towards a parsimonious naïve benchmark, and thus reduce estimation uncertainty. This paper studies the optimal choice of the informativeness of these priors, which we treat as additional parameters, in the spirit of hierarchical modeling. This approach is theoretically grounded, easy to implement, and greatly reduces the number and importance of subjective choices in the setting of the prior. Moreover, it performs very well both in terms of out-of-sample forecasting--as well as factor models--and accuracy in the estimation of impulse response functions.
主题Econometrics ; Estimation Methods ; Macroeconomics ; Business Cycles ; Money and Interest Rates
URLhttps://www.nber.org/papers/w18467
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/576141
推荐引用方式
GB/T 7714
Domenico Giannone,Michele Lenza,Giorgio E. Primiceri. Prior Selection for Vector Autoregressions. 2012.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w18467.pdf(306KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Domenico Giannone]的文章
[Michele Lenza]的文章
[Giorgio E. Primiceri]的文章
百度学术
百度学术中相似的文章
[Domenico Giannone]的文章
[Michele Lenza]的文章
[Giorgio E. Primiceri]的文章
必应学术
必应学术中相似的文章
[Domenico Giannone]的文章
[Michele Lenza]的文章
[Giorgio E. Primiceri]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w18467.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。