G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w20374
来源IDWorking Paper 20374
Spatial Errors in Count Data Regressions
Marinho Bertanha; Petra Moser
发表日期2014-08-14
出版年2014
语种英语
摘要Count data regressions are an important tool for empirical analyses ranging from analyses of patent counts to measures of health and unemployment. Along with negative binomial, Poisson panel regressions are a preferred method of analysis because the Poisson conditional fixed effects maximum likelihood estimator (PCFE) and its sandwich variance estimator are consistent even if the data are not Poisson-distributed, or if the data are correlated over time. Analyses of counts may be affected by correlation in the cross-section. For example, patent counts or publications may increase across related research fields in response to common shocks. This paper shows that the PCFE and its sandwich variance estimator are consistent in the presence of such dependence in the cross-section - as long as spatial dependence is time-invariant. In addition to the PCFE, this result also applies to the commonly used Logit model of panel data with fixed effects. We develop a test for time-invariant spatial dependence and provide code in STATA and MATLAB to implement the test.
主题Econometrics ; Estimation Methods ; Development and Growth ; Innovation and R& ; D
URLhttps://www.nber.org/papers/w20374
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/578048
推荐引用方式
GB/T 7714
Marinho Bertanha,Petra Moser. Spatial Errors in Count Data Regressions. 2014.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Marinho Bertanha]的文章
[Petra Moser]的文章
百度学术
百度学术中相似的文章
[Marinho Bertanha]的文章
[Petra Moser]的文章
必应学术
必应学术中相似的文章
[Marinho Bertanha]的文章
[Petra Moser]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。