G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w21124
来源IDWorking Paper 21124
Improving Policy Functions in High-Dimensional Dynamic Games
Carlos A. Manzanares; Ying Jiang; Patrick Bajari
发表日期2015-05-04
出版年2015
语种英语
摘要In this paper, we propose a method for finding policy function improvements for a single agent in high-dimensional Markov dynamic optimization problems, focusing in particular on dynamic games. Our approach combines ideas from literatures in Machine Learning and the econometric analysis of games to derive a one-step improvement policy over any given benchmark policy. In order to reduce the dimensionality of the game, our method selects a parsimonious subset of state variables in a data-driven manner using a Machine Learning estimator. This one-step improvement policy can in turn be improved upon until a suitable stopping rule is met as in the classical policy function iteration approach. We illustrate our algorithm in a high-dimensional entry game similar to that studied by Holmes (2011) and show that it results in a nearly 300 percent improvement in expected profits as compared with a benchmark policy.
主题Econometrics ; Estimation Methods ; Microeconomics ; Game Theory ; Industrial Organization ; Market Structure and Firm Performance
URLhttps://www.nber.org/papers/w21124
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/578799
推荐引用方式
GB/T 7714
Carlos A. Manzanares,Ying Jiang,Patrick Bajari. Improving Policy Functions in High-Dimensional Dynamic Games. 2015.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Carlos A. Manzanares]的文章
[Ying Jiang]的文章
[Patrick Bajari]的文章
百度学术
百度学术中相似的文章
[Carlos A. Manzanares]的文章
[Ying Jiang]的文章
[Patrick Bajari]的文章
必应学术
必应学术中相似的文章
[Carlos A. Manzanares]的文章
[Ying Jiang]的文章
[Patrick Bajari]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。