G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w21564
来源IDWorking Paper 21564
Low-Frequency Econometrics
Ulrich K. Müller; Mark W. Watson
发表日期2015-09-21
出版年2015
语种英语
摘要Many questions in economics involve long-run or trend variation and covariation in time series. Yet, time series of typical lengths contain only limited information about this long-run variation. This paper suggests that long-run sample information can be isolated using a small number of low-frequency trigonometric weighted averages, which in turn can be used to conduct inference about long-run variability and covariability. Because the low-frequency weighted averages have large sample normal distributions, large sample valid inference can often be conducted using familiar small sample normal inference procedures. Moreover, the general approach is applicable for a wide range of persistent stochastic processes that go beyond the familiar I(0) and I(1) models.
主题Econometrics ; Estimation Methods
URLhttps://www.nber.org/papers/w21564
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/579239
推荐引用方式
GB/T 7714
Ulrich K. Müller,Mark W. Watson. Low-Frequency Econometrics. 2015.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ulrich K. Müller]的文章
[Mark W. Watson]的文章
百度学术
百度学术中相似的文章
[Ulrich K. Müller]的文章
[Mark W. Watson]的文章
必应学术
必应学术中相似的文章
[Ulrich K. Müller]的文章
[Mark W. Watson]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。