G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w21641
来源IDWorking Paper 21641
Partial Identification in Applied Research: Benefits and Challenges
Kate Ho; Adam M. Rosen
发表日期2015-10-19
出版年2015
语种英语
摘要Advances in the study of partial identification allow applied researchers to learn about parameters of interest without making assumptions needed to guarantee point identification. We discuss the roles that assumptions and data play in partial identification analysis, with the goal of providing information to applied researchers that can help them employ these methods in practice. To this end, we present a sample of econometric models that have been used in a variety of recent applications where parameters of interest are partially identified, highlighting common features and themes across these papers. In addition, in order to help illustrate the combined roles of data and assumptions, we present numerical illustrations for a particular application, the joint determination of wages and labor supply. Finally we discuss the benefits and challenges of using partially identifying models in empirical work and point to possible avenues of future research.
主题Econometrics ; Estimation Methods
URLhttps://www.nber.org/papers/w21641
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/579316
推荐引用方式
GB/T 7714
Kate Ho,Adam M. Rosen. Partial Identification in Applied Research: Benefits and Challenges. 2015.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Kate Ho]的文章
[Adam M. Rosen]的文章
百度学术
百度学术中相似的文章
[Kate Ho]的文章
[Adam M. Rosen]的文章
必应学术
必应学术中相似的文章
[Kate Ho]的文章
[Adam M. Rosen]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。