G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w21842
来源IDWorking Paper 21842
Using Split Samples to Improve Inference about Causal Effects
Marcel Fafchamps; Julien Labonne
发表日期2016-01-11
出版年2016
语种英语
摘要We discuss a method aimed at reducing the risk that spurious results are published. Researchers send their datasets to an independent third party who randomly generates training and testing samples. Researchers perform their analysis on the former and once the paper is accepted for publication the method is applied to the latter and it is those results that are published. Simulations indicate that, under empirically relevant settings, the proposed method significantly reduces type I error and delivers adequate power. The method – that can be combined with pre-analysis plans – reduces the risk that relevant hypotheses are left untested.
主题Econometrics ; Estimation Methods
URLhttps://www.nber.org/papers/w21842
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/579516
推荐引用方式
GB/T 7714
Marcel Fafchamps,Julien Labonne. Using Split Samples to Improve Inference about Causal Effects. 2016.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w21842.pdf(329KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Marcel Fafchamps]的文章
[Julien Labonne]的文章
百度学术
百度学术中相似的文章
[Marcel Fafchamps]的文章
[Julien Labonne]的文章
必应学术
必应学术中相似的文章
[Marcel Fafchamps]的文章
[Julien Labonne]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w21842.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。