G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w22134
来源IDWorking Paper 22134
Rethinking Performance Evaluation
Campbell R. Harvey; Yan Liu
发表日期2016-04-04
出版年2016
语种英语
摘要We show that the standard equation-by-equation OLS used in performance evaluation ignores information in the alpha population and leads to severely biased estimates for the alpha population. We propose a new framework that treats fund alphas as random effects. Our framework allows us to make inference on the alpha population while controlling for various sources of estimation risk. At the individual fund level, our method pools information from the entire alpha distribution to make density forecast for the fund's alpha, offering a new way to think about performance evaluation. In simulations, we show that our method generates parameter estimates that universally dominate the OLS estimates, both at the population and at the individual fund level. While it is generally accepted that few if any mutual funds outperform, we find that the fraction of funds that generate positive alphas is accurately estimated at over 10%. An out-of-sample forecasting exercise also shows that our method generates superior alpha forecasts.
主题Financial Economics ; Financial Markets ; Portfolio Selection and Asset Pricing ; Financial Institutions
URLhttps://www.nber.org/papers/w22134
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/579807
推荐引用方式
GB/T 7714
Campbell R. Harvey,Yan Liu. Rethinking Performance Evaluation. 2016.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w22134.pdf(525KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Campbell R. Harvey]的文章
[Yan Liu]的文章
百度学术
百度学术中相似的文章
[Campbell R. Harvey]的文章
[Yan Liu]的文章
必应学术
必应学术中相似的文章
[Campbell R. Harvey]的文章
[Yan Liu]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w22134.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。