Gateway to Think Tanks
来源类型 | Working Paper |
规范类型 | 报告 |
DOI | 10.3386/w22134 |
来源ID | Working Paper 22134 |
Rethinking Performance Evaluation | |
Campbell R. Harvey; Yan Liu | |
发表日期 | 2016-04-04 |
出版年 | 2016 |
语种 | 英语 |
摘要 | We show that the standard equation-by-equation OLS used in performance evaluation ignores information in the alpha population and leads to severely biased estimates for the alpha population. We propose a new framework that treats fund alphas as random effects. Our framework allows us to make inference on the alpha population while controlling for various sources of estimation risk. At the individual fund level, our method pools information from the entire alpha distribution to make density forecast for the fund's alpha, offering a new way to think about performance evaluation. In simulations, we show that our method generates parameter estimates that universally dominate the OLS estimates, both at the population and at the individual fund level. While it is generally accepted that few if any mutual funds outperform, we find that the fraction of funds that generate positive alphas is accurately estimated at over 10%. An out-of-sample forecasting exercise also shows that our method generates superior alpha forecasts. |
主题 | Financial Economics ; Financial Markets ; Portfolio Selection and Asset Pricing ; Financial Institutions |
URL | https://www.nber.org/papers/w22134 |
来源智库 | National Bureau of Economic Research (United States) |
引用统计 | |
资源类型 | 智库出版物 |
条目标识符 | http://119.78.100.153/handle/2XGU8XDN/579807 |
推荐引用方式 GB/T 7714 | Campbell R. Harvey,Yan Liu. Rethinking Performance Evaluation. 2016. |
条目包含的文件 | ||||||
文件名称/大小 | 资源类型 | 版本类型 | 开放类型 | 使用许可 | ||
w22134.pdf(525KB) | 智库出版物 | 限制开放 | CC BY-NC-SA | 浏览 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Campbell R. Harvey]的文章 |
[Yan Liu]的文章 |
百度学术 |
百度学术中相似的文章 |
[Campbell R. Harvey]的文章 |
[Yan Liu]的文章 |
必应学术 |
必应学术中相似的文章 |
[Campbell R. Harvey]的文章 |
[Yan Liu]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。