Gateway to Think Tanks
来源类型 | Working Paper |
规范类型 | 报告 |
DOI | 10.3386/w22565 |
来源ID | Working Paper 22565 |
Exclusion Bias in the Estimation of Peer Effects | |
Bet Caeyers; Marcel Fafchamps | |
发表日期 | 2016-08-25 |
出版年 | 2016 |
语种 | 英语 |
摘要 | We examine a largely unexplored source of downward bias in peer effect estimation, namely, exclusion bias. We derive formulas for the magnitude of the bias in tests of random peer assignment, and for the combined reflection and exclusion bias in peer effect estimation. We show how to consistently test random peer assignment and how to estimate and conduct consistent inference on peer effects without instruments. The method corrects for the presence of reflection and exclusion bias but imposes restrictions on correlated effects. It allows the joint estimation of endogenous and exogenous peer effects in situations where instruments are not available and cannot be constructed from the network matrix. We estimate endogenous and exogenous peer effects in two datasets where instrumental approaches fail because peer assignment is to mutually exclusive groups of identical size. We find significant evidence of positive peer effects in one, negative peer effects in the other. In both cases, ignoring exclusion bias would have led to incorrect inference. We also demonstrate how the same approach applies to autoregressive models. |
主题 | Econometrics ; Estimation Methods |
URL | https://www.nber.org/papers/w22565 |
来源智库 | National Bureau of Economic Research (United States) |
引用统计 | |
资源类型 | 智库出版物 |
条目标识符 | http://119.78.100.153/handle/2XGU8XDN/580239 |
推荐引用方式 GB/T 7714 | Bet Caeyers,Marcel Fafchamps. Exclusion Bias in the Estimation of Peer Effects. 2016. |
条目包含的文件 | ||||||
文件名称/大小 | 资源类型 | 版本类型 | 开放类型 | 使用许可 | ||
w22565.pdf(956KB) | 智库出版物 | 限制开放 | CC BY-NC-SA | 浏览 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Bet Caeyers]的文章 |
[Marcel Fafchamps]的文章 |
百度学术 |
百度学术中相似的文章 |
[Bet Caeyers]的文章 |
[Marcel Fafchamps]的文章 |
必应学术 |
必应学术中相似的文章 |
[Bet Caeyers]的文章 |
[Marcel Fafchamps]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。