G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w22976
来源IDWorking Paper 22976
Classification Trees for Heterogeneous Moment-Based Models
Sam Asher; Denis Nekipelov; Paul Novosad; Stephen P. Ryan
发表日期2016-12-26
出版年2016
语种英语
摘要A basic problem in applied settings is that different parameters may apply to the same model in different populations. We address this problem by proposing a method using moment trees; leveraging the basic intuition of a classification tree, our method partitions the covariate space into disjoint subsets and fits a set of moments within each subspace. We prove the consistency of this estimator and show standard rates of convergence apply post-model selection. Monte Carlo evidence demonstrates the excellent small sample performance and faster-than-parametric convergence rates of the model selection step in two common empirical contexts. Finally, we showcase the usefulness of our approach by estimating heterogeneous treatment effects in a regression discontinuity design in a development setting.
主题Econometrics ; Estimation Methods ; Development and Growth ; Development
URLhttps://www.nber.org/papers/w22976
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/580650
推荐引用方式
GB/T 7714
Sam Asher,Denis Nekipelov,Paul Novosad,et al. Classification Trees for Heterogeneous Moment-Based Models. 2016.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w22976.pdf(1440KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sam Asher]的文章
[Denis Nekipelov]的文章
[Paul Novosad]的文章
百度学术
百度学术中相似的文章
[Sam Asher]的文章
[Denis Nekipelov]的文章
[Paul Novosad]的文章
必应学术
必应学术中相似的文章
[Sam Asher]的文章
[Denis Nekipelov]的文章
[Paul Novosad]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w22976.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。