G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w23227
来源IDWorking Paper 23227
Dissecting Characteristics Nonparametrically
Joachim Freyberger; Andreas Neuhierl; Michael Weber
发表日期2017-03-13
出版年2017
语种英语
摘要We propose a nonparametric method to test which characteristics provide independent information for the cross section of expected returns. We use the adaptive group LASSO to select characteristics and to estimate how they affect expected returns nonparametrically. Our method can handle a large number of characteristics, allows for a flexible functional form, and is insensitive to outliers. Many of the previously identified return predictors do not provide incremental information for expected returns, and nonlinearities are important. Our proposed method has higher out-of-sample explanatory power compared to linear panel regressions, and increases Sharpe ratios by 50%.
主题Econometrics ; Estimation Methods ; Financial Economics ; Portfolio Selection and Asset Pricing
URLhttps://www.nber.org/papers/w23227
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/580901
推荐引用方式
GB/T 7714
Joachim Freyberger,Andreas Neuhierl,Michael Weber. Dissecting Characteristics Nonparametrically. 2017.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w23227.pdf(2873KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Joachim Freyberger]的文章
[Andreas Neuhierl]的文章
[Michael Weber]的文章
百度学术
百度学术中相似的文章
[Joachim Freyberger]的文章
[Andreas Neuhierl]的文章
[Michael Weber]的文章
必应学术
必应学术中相似的文章
[Joachim Freyberger]的文章
[Andreas Neuhierl]的文章
[Michael Weber]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w23227.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。