G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w23298
来源IDWorking Paper 23298
Identification of and Correction for Publication Bias
Isaiah Andrews; Maximilian Kasy
发表日期2017-04-03
出版年2017
语种英语
摘要Some empirical results are more likely to be published than others. Such selective publication leads to biased estimates and distorted inference. This paper proposes two approaches for identifying the conditional probability of publication as a function of a study’s results, the first based on systematic replication studies and the second based on meta-studies. For known conditional publication probabilities, we propose median-unbiased estimators and associated confidence sets that correct for selective publication. We apply our methods to recent large-scale replication studies in experimental economics and psychology, and to meta-studies of the effects of minimum wages and de-worming programs.
主题Econometrics ; Estimation Methods
URLhttps://www.nber.org/papers/w23298
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/580972
推荐引用方式
GB/T 7714
Isaiah Andrews,Maximilian Kasy. Identification of and Correction for Publication Bias. 2017.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w23298.pdf(761KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Isaiah Andrews]的文章
[Maximilian Kasy]的文章
百度学术
百度学术中相似的文章
[Isaiah Andrews]的文章
[Maximilian Kasy]的文章
必应学术
必应学术中相似的文章
[Isaiah Andrews]的文章
[Maximilian Kasy]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w23298.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。