G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w23326
来源IDWorking Paper 23326
Estimating the Gains from New Rail Transit Investment: A Machine Learning Tree Approach
Seungwoo Chin; Matthew E. Kahn; Hyungsik Roger Moon
发表日期2017-04-17
出版年2017
语种英语
摘要Urban rail transit investments are expensive and irreversible. Since people differ with respect to their demand for trips, their value of time, and the types of real estate they live in, such projects are likely to offer heterogeneous benefits to residents of a city. Using the opening of a major new subway in Seoul, we contrast hedonic estimates based on multivariate hedonic methods with a machine learning approach that allows us to estimate these heterogeneous effects. While a majority of the "treated" apartment types appreciate in value, other types decline in value. We explore potential mechanisms. We also cross-validate our estimates by studying what types of new housing units developers build in the treated areas close to the new train lines.
主题Regional and Urban Economics
URLhttps://www.nber.org/papers/w23326
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/581000
推荐引用方式
GB/T 7714
Seungwoo Chin,Matthew E. Kahn,Hyungsik Roger Moon. Estimating the Gains from New Rail Transit Investment: A Machine Learning Tree Approach. 2017.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w23326.pdf(826KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Seungwoo Chin]的文章
[Matthew E. Kahn]的文章
[Hyungsik Roger Moon]的文章
百度学术
百度学术中相似的文章
[Seungwoo Chin]的文章
[Matthew E. Kahn]的文章
[Hyungsik Roger Moon]的文章
必应学术
必应学术中相似的文章
[Seungwoo Chin]的文章
[Matthew E. Kahn]的文章
[Hyungsik Roger Moon]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w23326.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。