G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w23448
来源IDWorking Paper 23448
Tempered Particle Filtering
Edward Herbst; Frank Schorfheide
发表日期2017-05-29
出版年2017
语种英语
摘要The accuracy of particle filters for nonlinear state-space models crucially depends on the proposal distribution that mutates time t-1 particle values into time t values. In the widely-used bootstrap particle filter, this distribution is generated by the state-transition equation. While straightforward to implement, the practical performance is often poor. We develop a self-tuning particle filter in which the proposal distribution is constructed adaptively through a sequence of Monte Carlo steps. Intuitively, we start from a measurement error distribution with an inflated variance, and then gradually reduce the variance to its nominal level in a sequence of tempering steps. We show that the filter generates an unbiased and consistent approximation of the likelihood function. Holding the run time fixed, our filter is substantially more accurate in two DSGE model applications than the bootstrap particle filter.
主题Econometrics ; Estimation Methods ; Macroeconomics ; Business Cycles
URLhttps://www.nber.org/papers/w23448
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/581121
推荐引用方式
GB/T 7714
Edward Herbst,Frank Schorfheide. Tempered Particle Filtering. 2017.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w23448.pdf(806KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Edward Herbst]的文章
[Frank Schorfheide]的文章
百度学术
百度学术中相似的文章
[Edward Herbst]的文章
[Frank Schorfheide]的文章
必应学术
必应学术中相似的文章
[Edward Herbst]的文章
[Frank Schorfheide]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w23448.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。