G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w23908
来源IDWorking Paper 23908
Machine Learning from Schools about Energy Efficiency
Fiona Burlig; Christopher Knittel; David Rapson; Mar Reguant; Catherine Wolfram
发表日期2017-10-09
出版年2017
语种英语
摘要In the United States, consumers invest billions of dollars annually in energy efficiency, often on the assumption that these investments will pay for themselves via future energy cost reductions. We study energy efficiency upgrades in K-12 schools in California. We develop and implement a novel machine learning approach for estimating treatment effects using high-frequency panel data, and demonstrate that this method outperforms standard panel fixed effects approaches. We find that energy efficiency upgrades reduce electricity consumption by 3 percent, but that these reductions total only 24 percent of ex ante expected savings. HVAC and lighting upgrades perform better, but still deliver less than half of what was expected. Finally, beyond location, school characteristics that are readily available to policymakers do not appear to predict realization rates across schools, suggesting that improving realization rates via targeting may prove challenging.
主题Econometrics ; Estimation Methods ; Industrial Organization ; Industry Studies ; Environmental and Resource Economics ; Energy
URLhttps://www.nber.org/papers/w23908
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/581581
推荐引用方式
GB/T 7714
Fiona Burlig,Christopher Knittel,David Rapson,et al. Machine Learning from Schools about Energy Efficiency. 2017.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w23908.pdf(653KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Fiona Burlig]的文章
[Christopher Knittel]的文章
[David Rapson]的文章
百度学术
百度学术中相似的文章
[Fiona Burlig]的文章
[Christopher Knittel]的文章
[David Rapson]的文章
必应学术
必应学术中相似的文章
[Fiona Burlig]的文章
[Christopher Knittel]的文章
[David Rapson]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w23908.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。