G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w23933
来源IDWorking Paper 23933
Sparse Signals in the Cross-Section of Returns
Alexander M. Chinco; Adam D. Clark-Joseph; Mao Ye
发表日期2017-10-16
出版年2017
语种英语
摘要This paper applies the Least Absolute Shrinkage and Selection Operator (LASSO) to make rolling 1-minute-ahead return forecasts using the entire cross section of lagged returns as candidate predictors. The LASSO increases both out-of-sample fit and forecast-implied Sharpe ratios. And, this out-of-sample success comes from identifying predictors that are unexpected, short-lived, and sparse. Although the LASSO uses a statistical rule rather than economic intuition to identify predictors, the predictors it identifies are nevertheless associated with economically meaningful events: the LASSO tends to identify as predictors stocks with news about fundamentals.
主题Econometrics ; Estimation Methods ; Financial Economics ; Portfolio Selection and Asset Pricing ; Financial Markets
URLhttps://www.nber.org/papers/w23933
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/581606
推荐引用方式
GB/T 7714
Alexander M. Chinco,Adam D. Clark-Joseph,Mao Ye. Sparse Signals in the Cross-Section of Returns. 2017.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w23933.pdf(917KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Alexander M. Chinco]的文章
[Adam D. Clark-Joseph]的文章
[Mao Ye]的文章
百度学术
百度学术中相似的文章
[Alexander M. Chinco]的文章
[Adam D. Clark-Joseph]的文章
[Mao Ye]的文章
必应学术
必应学术中相似的文章
[Alexander M. Chinco]的文章
[Adam D. Clark-Joseph]的文章
[Mao Ye]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w23933.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。