Gateway to Think Tanks
来源类型 | Working Paper |
规范类型 | 报告 |
DOI | 10.3386/w24208 |
来源ID | Working Paper 24208 |
A Sufficient Statistics Approach for Aggregating Firm-Level Experiments | |
David Sraer; David Thesmar | |
发表日期 | 2018-01-15 |
出版年 | 2018 |
语种 | 英语 |
摘要 | We consider a dynamic economy populated by heterogeneous firms subject to generic capital frictions: adjustment costs, taxes and financing constraints. A random subset of firms in this economy receives an empirical "treatment", which modifies the parameters governing these frictions. An econometrician observes the firm-level response to this treatment, and wishes to calculate how macroeconomic outcomes would change if all firms in the economy were treated. Our paper proposes a simple methodology to estimate this aggregate counterfactual using firm-level evidence only. Our approach takes general equilibrium effects into account, requires neither a structural estimation nor a precise knowledge on the exact nature of the experiment and can be implemented using simple moments of the distribution of revenue-to-capital ratios. We provide a set of sufficient conditions under which these formulas are valid and investigate the robustness of our approach to multiple variations in the aggregation framework. |
主题 | Macroeconomics ; Consumption and Investment ; Financial Economics ; Corporate Finance |
URL | https://www.nber.org/papers/w24208 |
来源智库 | National Bureau of Economic Research (United States) |
引用统计 | |
资源类型 | 智库出版物 |
条目标识符 | http://119.78.100.153/handle/2XGU8XDN/581882 |
推荐引用方式 GB/T 7714 | David Sraer,David Thesmar. A Sufficient Statistics Approach for Aggregating Firm-Level Experiments. 2018. |
条目包含的文件 | ||||||
文件名称/大小 | 资源类型 | 版本类型 | 开放类型 | 使用许可 | ||
w24208.pdf(555KB) | 智库出版物 | 限制开放 | CC BY-NC-SA | 浏览 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[David Sraer]的文章 |
[David Thesmar]的文章 |
百度学术 |
百度学术中相似的文章 |
[David Sraer]的文章 |
[David Thesmar]的文章 |
必应学术 |
必应学术中相似的文章 |
[David Sraer]的文章 |
[David Thesmar]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。