G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w24243
来源IDWorking Paper 24243
Prediction, Judgment and Complexity: A Theory of Decision Making and Artificial Intelligence
Ajay K. Agrawal; Joshua S. Gans; Avi Goldfarb
发表日期2018-01-29
出版年2018
语种英语
摘要We interpret recent developments in the field of artificial intelligence (AI) as improvements in prediction technology. In this paper, we explore the consequences of improved prediction in decision-making. To do so, we adapt existing models of decision-making under uncertainty to account for the process of determining payoffs. We label this process of determining the payoffs ‘judgment.’ There is a risky action, whose payoff depends on the state, and a safe action with the same payoff in every state. Judgment is costly; for each potential state, it requires thought on what the payoff might be. Prediction and judgment are complements as long as judgment is not too difficult. We show that in complex environments with a large number of potential states, the effect of improvements in prediction on the importance of judgment depend a great deal on whether the improvements in prediction enable automated decision-making. We discuss the implications of improved prediction in the face of complexity for automation, contracts, and firm boundaries.
主题Microeconomics ; Economics of Information ; Development and Growth ; Innovation and R& ; D
URLhttps://www.nber.org/papers/w24243
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/581917
推荐引用方式
GB/T 7714
Ajay K. Agrawal,Joshua S. Gans,Avi Goldfarb. Prediction, Judgment and Complexity: A Theory of Decision Making and Artificial Intelligence. 2018.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w24243.pdf(557KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ajay K. Agrawal]的文章
[Joshua S. Gans]的文章
[Avi Goldfarb]的文章
百度学术
百度学术中相似的文章
[Ajay K. Agrawal]的文章
[Joshua S. Gans]的文章
[Avi Goldfarb]的文章
必应学术
必应学术中相似的文章
[Ajay K. Agrawal]的文章
[Joshua S. Gans]的文章
[Avi Goldfarb]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w24243.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。