G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w24358
来源IDWorking Paper 24358
Learning When to Quit: An Empirical Model of Experimentation
Bernhard Ganglmair; Timothy Simcoe; Emanuele Tarantino
发表日期2018-02-26
出版年2018
语种英语
摘要Research productivity depends on the ability to discern whether an idea is promising, and a willingness to abandon the ones that are not. Economists know little about this process, however, because empirical studies of innovation typically begin with a sample of issued patents or published papers that were already selected from a pool of promising ideas. This paper unpacks the idea selection process using a unique dataset from the Internet Engineering Task Force (IETF), a voluntary organization that develops protocols for managing Internet infrastructure. For a large sample of IETF proposals, we observe a sequence of decisions to either revise, publish, or abandon the underlying idea, along with changes to the proposal and the demographics of the author team. Using these data, we provide a descriptive analysis of how R&D is conducted within the IETF, and estimate a dynamic discrete choice model whose key parameters measure the speed at which author teams learn whether they have a good (i.e., publishable) idea. The estimates imply that sixty percent of IETF proposals are publishable, but only one-third of the good ideas survive the review process. Author experience and increased attention from the IETF community are associated with faster learning. Finally, we simulate two counterfactual innovation policies: an R&D subsidy and a publication-prize. Subsidies have a larger impact on research output, though prizes perform better when accounting for researchers' opportunity costs.
主题Microeconomics ; Economics of Information ; Development and Growth ; Innovation and R& ; D
URLhttps://www.nber.org/papers/w24358
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/582030
推荐引用方式
GB/T 7714
Bernhard Ganglmair,Timothy Simcoe,Emanuele Tarantino. Learning When to Quit: An Empirical Model of Experimentation. 2018.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w24358.pdf(1381KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bernhard Ganglmair]的文章
[Timothy Simcoe]的文章
[Emanuele Tarantino]的文章
百度学术
百度学术中相似的文章
[Bernhard Ganglmair]的文章
[Timothy Simcoe]的文章
[Emanuele Tarantino]的文章
必应学术
必应学术中相似的文章
[Bernhard Ganglmair]的文章
[Timothy Simcoe]的文章
[Emanuele Tarantino]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w24358.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。