G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w24435
来源IDWorking Paper 24435
Selecting Directors Using Machine Learning
Isil Erel; Léa H. Stern; Chenhao Tan; Michael S. Weisbach
发表日期2018-03-26
出版年2018
语种英语
摘要Can algorithms assist firms in their decisions on nominating corporate directors? We construct algorithms to make out-of-sample predictions of director performance. Tests of the quality of these predictions show that directors predicted to do poorly indeed do poorly compared to a realistic pool of candidates. Predictably poor performing directors are more likely to be male, have more past and current directorships, fewer qualifications, and larger networks than the directors the algorithm would recommend in their place. Machine learning holds promise for understanding the process by which governance structures are chosen, and has potential to help real-world firms improve their governance.
主题Financial Economics ; Corporate Finance ; Other ; Accounting, Marketing, and Personnel
URLhttps://www.nber.org/papers/w24435
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/582108
推荐引用方式
GB/T 7714
Isil Erel,Léa H. Stern,Chenhao Tan,et al. Selecting Directors Using Machine Learning. 2018.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w24435.pdf(532KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Isil Erel]的文章
[Léa H. Stern]的文章
[Chenhao Tan]的文章
百度学术
百度学术中相似的文章
[Isil Erel]的文章
[Léa H. Stern]的文章
[Chenhao Tan]的文章
必应学术
必应学术中相似的文章
[Isil Erel]的文章
[Léa H. Stern]的文章
[Chenhao Tan]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w24435.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。