G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w24541
来源IDWorking Paper 24541
Finding Needles in Haystacks: Artificial Intelligence and Recombinant Growth
Ajay Agrawal; John McHale; Alex Oettl
发表日期2018-04-23
出版年2018
语种英语
摘要Innovation is often predicated on discovering useful new combinations of existing knowledge in highly complex knowledge spaces. These needle-in-a-haystack type problems are pervasive in fields like genomics, drug discovery, materials science, and particle physics. We develop a combinatorial-based knowledge production function and embed it in the classic Jones growth model (1995) to explore how breakthroughs in artificial intelligence (AI) that dramatically improve prediction accuracy about which combinations have the highest potential could enhance discovery rates and consequently economic growth. This production function is a generalization (and reinterpretation) of the Romer/Jones knowledge production function. Separate parameters control the extent of individual-researcher knowledge access, the effects of fishing out/complexity, and the ease of forming research teams.
主题Development and Growth ; Innovation and R& ; D ; Growth and Productivity ; Other ; Culture
URLhttps://www.nber.org/papers/w24541
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/582214
推荐引用方式
GB/T 7714
Ajay Agrawal,John McHale,Alex Oettl. Finding Needles in Haystacks: Artificial Intelligence and Recombinant Growth. 2018.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w24541.pdf(676KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ajay Agrawal]的文章
[John McHale]的文章
[Alex Oettl]的文章
百度学术
百度学术中相似的文章
[Ajay Agrawal]的文章
[John McHale]的文章
[Alex Oettl]的文章
必应学术
必应学术中相似的文章
[Ajay Agrawal]的文章
[John McHale]的文章
[Alex Oettl]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w24541.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。