G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w24678
来源IDWorking Paper 24678
Generic Machine Learning Inference on Heterogeneous Treatment Effects in Randomized Experiments, with an Application to Immunization in India
Victor Chernozhukov; Mert Demirer; Esther Duflo; Iván Fernández-Val
发表日期2018-06-11
出版年2018
语种英语
摘要We propose strategies to estimate and make inference on key features of heterogeneous effects in randomized experiments. These key features include best linear predictors of the effects on machine learning proxies, average effects sorted by impact groups, and average characteristics of most and least impacted units. The approach is valid in high dimensional settings, where the effects are proxied by machine learning methods. We post-process these proxies into the estimates of the key features. Our approach is generic, it can be used in conjunction with penalized methods, deep and shallowneural networks, canonical and newrandom forests, boosted trees, and ensemble methods. Estimation and inference are based on repeated data splitting to avoid overfitting and achieve validity. For inference, we take medians of p-values and medians of confidence intervals, resulting from many different data splits, and then adjust their nominal level to guarantee uniform validity. This variational inference method, which quantifies the uncertainty coming from both parameter estimation and data splitting, is shown to be uniformly valid for a large class of data generating processes. We illustrate the use of the approach with a randomized field experiment that evaluated a combination of nudges to stimulate demand for immunization in India.
主题Econometrics ; Estimation Methods ; Microeconomics ; Households and Firms ; Financial Economics ; Financial Institutions ; Development and Growth ; Development
URLhttps://www.nber.org/papers/w24678
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/582351
推荐引用方式
GB/T 7714
Victor Chernozhukov,Mert Demirer,Esther Duflo,et al. Generic Machine Learning Inference on Heterogeneous Treatment Effects in Randomized Experiments, with an Application to Immunization in India. 2018.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w24678.pdf(633KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Victor Chernozhukov]的文章
[Mert Demirer]的文章
[Esther Duflo]的文章
百度学术
百度学术中相似的文章
[Victor Chernozhukov]的文章
[Mert Demirer]的文章
[Esther Duflo]的文章
必应学术
必应学术中相似的文章
[Victor Chernozhukov]的文章
[Mert Demirer]的文章
[Esther Duflo]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w24678.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。