G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w24914
来源IDWorking Paper 24914
Quadratic Games
Nicolas S. Lambert; Giorgio Martini; Michael Ostrovsky
发表日期2018-08-20
出版年2018
语种英语
摘要We study general quadratic games with multidimensional actions, stochastic payoff interactions, and rich information structures. We first consider games with arbitrary finite information structures. In such games, we show that there generically exists a unique equilibrium. We then extend the result to games with infinite information structures, under an additional assumption of linearity of certain conditional expectations. In that case, there generically exists a unique linear equilibrium. In both cases, the equilibria can be explicitly characterized in compact closed form. We illustrate our results by studying information aggregation in large asymmetric Cournot markets and the effects of stochastic payoff interactions in beauty contests. Our results apply to general games with linear best responses, and also allow us to characterize the effects of small perturbations in arbitrary Bayesian games with finite information structures and smooth payoffs.
主题Microeconomics ; Mathematical Tools ; Game Theory ; Market Structure and Distribution ; Industrial Organization ; Market Structure and Firm Performance
URLhttps://www.nber.org/papers/w24914
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/582588
推荐引用方式
GB/T 7714
Nicolas S. Lambert,Giorgio Martini,Michael Ostrovsky. Quadratic Games. 2018.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w24914.pdf(507KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Nicolas S. Lambert]的文章
[Giorgio Martini]的文章
[Michael Ostrovsky]的文章
百度学术
百度学术中相似的文章
[Nicolas S. Lambert]的文章
[Giorgio Martini]的文章
[Michael Ostrovsky]的文章
必应学术
必应学术中相似的文章
[Nicolas S. Lambert]的文章
[Giorgio Martini]的文章
[Michael Ostrovsky]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w24914.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。