G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w24953
来源IDWorking Paper 24953
Measuring Bias in Consumer Lending
Will Dobbie; Andres Liberman; Daniel Paravisini; Vikram Pathania
发表日期2018-09-03
出版年2018
语种英语
摘要This paper tests for bias in consumer lending decisions using administrative data from a high-cost lender in the United Kingdom. We motivate our analysis using a simple model of bias in lending, which predicts that profits should be identical for loan applicants from different groups at the margin if loan examiners are unbiased. We identify the profitability of marginal loan applicants by exploiting variation from the quasi-random assignment of loan examiners. We find significant bias against both immigrant and older loan applicants when using the firm's preferred measure of long-run profits. In contrast, there is no evidence of bias when using a short-run measure used to evaluate examiner performance, suggesting that the bias in our setting is due to the misalignment of firm and examiner incentives. We conclude by showing that a decision rule based on machine learning predictions of long-run profitability can simultaneously increase profits and eliminate bias.
主题Financial Economics ; Behavioral Finance ; Labor Economics ; Demography and Aging
URLhttps://www.nber.org/papers/w24953
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/582627
推荐引用方式
GB/T 7714
Will Dobbie,Andres Liberman,Daniel Paravisini,et al. Measuring Bias in Consumer Lending. 2018.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w24953.pdf(2573KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Will Dobbie]的文章
[Andres Liberman]的文章
[Daniel Paravisini]的文章
百度学术
百度学术中相似的文章
[Will Dobbie]的文章
[Andres Liberman]的文章
[Daniel Paravisini]的文章
必应学术
必应学术中相似的文章
[Will Dobbie]的文章
[Andres Liberman]的文章
[Daniel Paravisini]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w24953.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。