G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w25102
来源IDWorking Paper 25102
Forecasting with Dynamic Panel Data Models
Laura Liu; Hyungsik Roger Moon; Frank Schorfheide
发表日期2018-10-01
出版年2018
语种英语
摘要This paper considers the problem of forecasting a collection of short time series using cross sectional information in panel data. We construct point predictors using Tweedie's formula for the posterior mean of heterogeneous coefficients under a correlated random effects distribution. This formula utilizes cross-sectional information to transform the unit-specific (quasi) maximum likelihood estimator into an approximation of the posterior mean under a prior distribution that equals the population distribution of the random coefficients. We show that the risk of a predictor based on a non-parametric kernel estimate of the Tweedie correction is asymptotically equivalent to the risk of a predictor that treats the correlated-random-effects distribution as known (ratio-optimality). Our empirical Bayes predictor performs well compared to various competitors in a Monte Carlo study. In an empirical application we use the predictor to forecast revenues for a large panel of bank holding companies and compare forecasts that condition on actual and severely adverse macroeconomic conditions.
主题Econometrics ; Estimation Methods ; Financial Economics ; Financial Institutions
URLhttps://www.nber.org/papers/w25102
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/582775
推荐引用方式
GB/T 7714
Laura Liu,Hyungsik Roger Moon,Frank Schorfheide. Forecasting with Dynamic Panel Data Models. 2018.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w25102.pdf(1646KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Laura Liu]的文章
[Hyungsik Roger Moon]的文章
[Frank Schorfheide]的文章
百度学术
百度学术中相似的文章
[Laura Liu]的文章
[Hyungsik Roger Moon]的文章
[Frank Schorfheide]的文章
必应学术
必应学术中相似的文章
[Laura Liu]的文章
[Hyungsik Roger Moon]的文章
[Frank Schorfheide]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w25102.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。