Gateway to Think Tanks
来源类型 | Working Paper |
规范类型 | 报告 |
DOI | 10.3386/w25102 |
来源ID | Working Paper 25102 |
Forecasting with Dynamic Panel Data Models | |
Laura Liu; Hyungsik Roger Moon; Frank Schorfheide | |
发表日期 | 2018-10-01 |
出版年 | 2018 |
语种 | 英语 |
摘要 | This paper considers the problem of forecasting a collection of short time series using cross sectional information in panel data. We construct point predictors using Tweedie's formula for the posterior mean of heterogeneous coefficients under a correlated random effects distribution. This formula utilizes cross-sectional information to transform the unit-specific (quasi) maximum likelihood estimator into an approximation of the posterior mean under a prior distribution that equals the population distribution of the random coefficients. We show that the risk of a predictor based on a non-parametric kernel estimate of the Tweedie correction is asymptotically equivalent to the risk of a predictor that treats the correlated-random-effects distribution as known (ratio-optimality). Our empirical Bayes predictor performs well compared to various competitors in a Monte Carlo study. In an empirical application we use the predictor to forecast revenues for a large panel of bank holding companies and compare forecasts that condition on actual and severely adverse macroeconomic conditions. |
主题 | Econometrics ; Estimation Methods ; Financial Economics ; Financial Institutions |
URL | https://www.nber.org/papers/w25102 |
来源智库 | National Bureau of Economic Research (United States) |
引用统计 | |
资源类型 | 智库出版物 |
条目标识符 | http://119.78.100.153/handle/2XGU8XDN/582775 |
推荐引用方式 GB/T 7714 | Laura Liu,Hyungsik Roger Moon,Frank Schorfheide. Forecasting with Dynamic Panel Data Models. 2018. |
条目包含的文件 | ||||||
文件名称/大小 | 资源类型 | 版本类型 | 开放类型 | 使用许可 | ||
w25102.pdf(1646KB) | 智库出版物 | 限制开放 | CC BY-NC-SA | 浏览 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。