G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w25217
来源IDWorking Paper 25217
On the Informativeness of Descriptive Statistics for Structural Estimates
Isaiah Andrews; Matthew Gentzkow; Jesse M. Shapiro
发表日期2018-11-05
出版年2018
语种英语
摘要We propose a way to formalize the relationship between descriptive analysis and structural estimation. A researcher reports an estimate ĉ of a structural quantity of interest c that is exactly or asymptotically unbiased under some base model. The researcher also reports descriptive statistics γ̂ that estimate features γ of the distribution of the data that are related to c under the base model. A reader entertains a less restrictive model that is local to the base model, under which the estimate ĉ may be biased. We study the reduction in worst-case bias from a restriction that requires the reader's model to respect the relationship between c and γ specified by the base model. Our main result shows that the proportional reduction in worst-case bias depends only on a quantity we call the informativeness of γ̂ for ĉ. Informativeness can be easily estimated even for complex models. We recommend that researchers report estimated informativeness alongside their descriptive analyses, and we illustrate with applications to three recent papers.
主题Econometrics ; Estimation Methods ; Microeconomics ; Households and Firms ; Health, Education, and Welfare ; Health ; Education
URLhttps://www.nber.org/papers/w25217
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/582891
推荐引用方式
GB/T 7714
Isaiah Andrews,Matthew Gentzkow,Jesse M. Shapiro. On the Informativeness of Descriptive Statistics for Structural Estimates. 2018.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w25217.pdf(1230KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Isaiah Andrews]的文章
[Matthew Gentzkow]的文章
[Jesse M. Shapiro]的文章
百度学术
百度学术中相似的文章
[Isaiah Andrews]的文章
[Matthew Gentzkow]的文章
[Jesse M. Shapiro]的文章
必应学术
必应学术中相似的文章
[Isaiah Andrews]的文章
[Matthew Gentzkow]的文章
[Jesse M. Shapiro]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w25217.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。