G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w25398
来源IDWorking Paper 25398
Empirical Asset Pricing via Machine Learning
Shihao Gu; Bryan Kelly; Dacheng Xiu
发表日期2018-12-24
出版年2018
语种英语
摘要We perform a comparative analysis of machine learning methods for the canonical problem of empirical asset pricing: measuring asset risk premia. We demonstrate large economic gains to investors using machine learning forecasts, in some cases doubling the performance of leading regression-based strategies from the literature. We identify the best performing methods (trees and neural networks) and trace their predictive gains to allowance of nonlinear predictor interactions that are missed by other methods. All methods agree on the same set of dominant predictive signals which includes variations on momentum, liquidity, and volatility. Improved risk premium measurement through machine learning simplifies the investigation into economic mechanisms of asset pricing and highlights the value of machine learning in financial innovation.
主题Econometrics ; Estimation Methods ; Financial Economics ; Portfolio Selection and Asset Pricing
URLhttps://www.nber.org/papers/w25398
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/583072
推荐引用方式
GB/T 7714
Shihao Gu,Bryan Kelly,Dacheng Xiu. Empirical Asset Pricing via Machine Learning. 2018.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w25398.pdf(2331KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shihao Gu]的文章
[Bryan Kelly]的文章
[Dacheng Xiu]的文章
百度学术
百度学术中相似的文章
[Shihao Gu]的文章
[Bryan Kelly]的文章
[Dacheng Xiu]的文章
必应学术
必应学术中相似的文章
[Shihao Gu]的文章
[Bryan Kelly]的文章
[Dacheng Xiu]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w25398.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。