G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w25504
来源IDWorking Paper 25504
Meta-Analysis for Medical Decisions
Charles F. Manski
发表日期2019-02-04
出版年2019
语种英语
摘要Statisticians have proposed meta-analysis to combine the findings of multiple studies of health risks or treatment response. The standard practice is to compute a weighted-average of the estimates. Yet it is not clear how to interpret a weighted average of estimates reported in disparate studies. Meta-analyses often answer this question through the lens of a random-effects model, which interprets a weighted average of estimates as an estimate of a mean parameter across a hypothetical population of studies. The relevance to medical decision making is obscure. Decision-centered research should aim to inform risk assessment and treatment for populations of patients, not populations of studies. This paper lays out principles for decision-centered meta-analysis. One first specifies a prediction of interest and next examines what each available study credibly reveals. Such analysis typically yields a set-valued prediction rather than a point prediction. Thus, one uses each study to conclude that a probability of disease, or mean treatment response, lies within a range of possibilities. Finally, one combines the available studies by computing the intersection of the set-valued predictions that they yield. To demonstrate decision-centered meta-analysis, the paper considers assessment of the effect of anti-hypertensive drugs on blood pressure.
主题Econometrics ; Estimation Methods ; Health, Education, and Welfare ; Health
URLhttps://www.nber.org/papers/w25504
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/583178
推荐引用方式
GB/T 7714
Charles F. Manski. Meta-Analysis for Medical Decisions. 2019.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w25504.pdf(139KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Charles F. Manski]的文章
百度学术
百度学术中相似的文章
[Charles F. Manski]的文章
必应学术
必应学术中相似的文章
[Charles F. Manski]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w25504.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。